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Chapter 3
FINDING SLOPES, PART 2

Your Majesty says, “Kill a gentleman, and a gentleman is told off to be killed.
Consequently, that gentleman is as good as dead - practically, he is dead - and if
he is dead, why not say so? The Mikado, Act II, by Gilbert and Sullivan

We found equations for the slopes of the tangents to some simple curves in the last
chapter and are now ready to tackle more complicated curves. In the rest of this text, by
the way, we shall simplify the language by speaking of the slope of a curve when we mean
the slope of the tangent to the curve.

In this Chapter we shall introduce a quantity, that we call a “dibbl”, so small that its
square “is as good as” zero - practically, it is zero - and if it is zero, why not say so? The
dibbl will make it easier for us to calculate the slope of the tangent to any curve at a point
on the curve.

3.1 NEW LANGUAGE FOR CHAPTER 2

We found, in Chapter 2, the slope of a quadratic function y(z) = z? at a point x = z;. We
did this in Eq. ?? by finding the ratio of the change in y to the change in x between two
point x5 and x;. and then letting x5 = x;. Writing the last statement in symbols, we have

slope = y(@2) = y(@1) (3.1)

To —T1

and then let zo = 1. The same procedure should work for any smooth function y(z), but
the procedure would become pretty tedious if the function is very complicated, as the next
exercises demonstrate.



EXERCISE

3.1 Find the slope of the function y(x) = z* at the point x = z; using the method of Eq. 3.1.
Show all your work. Hints: (1. See Exercise 1.14. 2. Check your result by noting that when
x1 = 3 the value of the slope is 108.)

3.2 You are running around a circular quarter-mile track. The coach tells you that your distance
from the starting line is increasing proportionally to the cube of the time. At the end of 1 second
you have traveled 3 m.

(a) Write an equation for s(¢), the distance traveled, as a function of ¢. Check your equation
by noting that you must have traveled 24 m at the end of 2 seconds.

(b) Your speed at any time ¢ is the rate of change of your distance at time ¢. Find your speed
at any time t. (Here we are writing just ¢, instead of t;).

(c). A horse can gallop with a top speed of about 7 m/sec. After how many seconds are you
running at a horse's top speed?

(d) Did you have to consider the shape of the track when you answered (a) through (c)?

It turns out that we can simplify the calculation of slope by taking the points x5 and x;
to be very close together. This makes sense, because at the end of the calculation we are
going to let x9 = x1. So let’s start by simplifying the notation, dropping the subscripts and
restating the problem as follows: Find the slope of the function y(z) at some value
of z.

We will do this by finding the slope of a straight line that intersects y(x) at two points
that are so close together that they are practically, but not quite, the same point. We
write the two points as y(z) and y(z + dz). Since z and x + dz are nearly the same, we say
that = + dx is just a dibbl away from =x.

Also, since we know that y(z) is described by a smooth curve, we also know that the two
points on the curve with y-values y(z) and y(z + dx)) are just a dibbl away from each other.

We have already said that a dibbl is a quantity so small that we can take its square to
be zero “for all practical purposes.” So for the rest of this book we shall use “the dibbl
equation”

dz x dz = dz* =0 (3.2)

We demonstrate the use of the dibbl by recalculating Eq. ??, the slope of a quadratic at

the point y(x). we write:
y(z + dz) — y(z)
slope = @t di) -z (3.3)

=0
=

c(x? + 2cxdx + dz?) — cx?

dx
_ 2cx X dof _ 90g
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Eq. 3.3 no longer requires the step of setting the point x5 equal to the point x;. The
dibbl equation makes that step unnecessary.

Note that the slope in Eq. 3.3 is a function of z. It is, in fact, a function of x that was
derived from the original function y = cz?. Mathematicians, for this reason, call the slope of
a function y(x) the derivative and write it as a ratio of two dibbls, dy and dx. To summarize,
then, for any smooth function y(z) there is a slope function, called the derivative,

dy _ylo+de) —y(e) _ ylo+da) = y(a)
dx (x +dx) —x dx

(3.4)

IMPORTANT NOTE Many textbooks, for historical reason, write the derivative of a
function y(z) with a “prime” symbol. So the symbols ¢/, y(z)', y'(x), and Z—Z all mean exactly
the same thing. We shall sometimes use the prime symbol in this text, so that you can
accustom themselves to both usages.

EXERCISE

3.3 Redo Exercise 3.1, this time using the dibbl method.

3.2 POWERS OF SMALL NUMBERS;
THE DIBBL dx

We have introduced the dibbl as a quantity ”that is so small that its square is as good as
zero”. "How small is that?”, you might say. So let’s get some experience with the squares
of small numbers.

EXERCISE

3.4 You may use your calculator for this exercise:

(a) How much is the square of £? (Hint: If you didn’t get

to third grade).

(b) Now take a piece of paper and a ruler marked in centimeters and draw a straight line that is

10 cm long. Divide the line into 5 equal parts by marking little dots ("tick marks”) on the line.
Next, divide each division into 5 equal parts, again using tick marks. Into how many divisions

have you divided the 10 cm line? Your line should resemble the line in Fig. 3-1.

(c) Does the distance between the little tick marks in Fig 3-1 represent the square of the distance

between the large tick marks? (Hint: If you answered "No", go back and redo part (a) of this

Exercise). Now complete the following table, using your calculator if you so desire:

1

o5 ask your teacher to send you back



1 2 _ 1
r= = 2 = o = 04
—_ 1 _ _
= = =

1
s T ~
500 -

50000
(d) Are you tired of writing out the zeros in part (c)? Let's do the same calculations in power-
of-ten notation, which we will use in all future exercises that involve numbers:

r= L= 2x 107! 2= 1 =4x10"2
5 1 25
5x10 =
1 _ —
5%x102 — -
1 _ _
5%x103 — -
1 _ _
5% 105

Exercise 3.4 shows that the square of a fraction means “taking a fraction of a fraction”.
If the fraction is a very small number then its square may be very small indeed. How small
must the number be so that the square “is as good as” zero? In other words, how small is a
dibbl? We shall discuss this question further in Chapter 28 when we discuss limits.

Our conclusion is that a dibbl is not an ordinary number, but is something that is smaller
than any fraction!

We close this section by reminding ourselves why it is difficult to assign a value to %.

EXERCISE
3.5
(a) Ask your calculator to find a value for % and write down the result. If you got a value, you
are finished.

(b) If your calculator couldn’t do the problem try dividing 1 by a lot of values in the denominator
that are close to zero. Then you can try to guess the result. One way to do this is to take a
sheet of graph paper, and plot values of % for a lot of different fractional values of z. (Don't
forget to include negative values). The answer should be roughly half way between the value for
the smallest positive value of x and the smallest negative value. What is your result?

(c) If you are in a study group, compare your result with others in your group. Can you all agree
on the same value?

(d) What would you say to someone who claims that division by zero is “undefined”? Explain
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your answer, referring to your results in part (b).

3.3 dz? IS ZERO SIMPLIFIES
THE BINOMIAL THEOREM

EXERCISE

3.6 (a). Write down the derivative functions (the slope function, remember?) % for y(z) =
z, 2%, 2%, 2%, (You worked these out in Section 3.1).

(b) Guess what the derivative function is for y(xz) = 2™ where n stands for any positive integer
(do not use a specific numerical value for n), and write down your answer.

We now help you work out the answer to Exercise 3.6(b), using the definition of the
derivative in Eq. 3.4. The first step is to expand the product (z + dz)", remembering that
all powers of dx higher than the first power are zero. We write:

n times

y(z) = (z + dz)" = (z + dz)(z + dz) - - - (x + dz) (3.5)

The highest power of z in Eq. 3.5 comes from multiplying all of the z’'s together. There
is only one way to do this, so there is a leading term z".

The next term will come from multiplying together (n — 1) z's and one dz. How many
such terms are there? That’s an easy question, because there are exactly n different dz’s in
the product in Eq. 3.5. The second term is therefore nz" 'dzx.

What about the next term? It will have the product of (n — 2) z's, two dz's and a
numerical coefficient, let’s call it a. There will be more terms, involving products of three
and even more dz's (if n is bigger than 2). The numerical coefficient that goes with each
term is known from the binomial theorem that people learn about in pre-calculus courses.

But we don’t care about the value of a and all those numerical coefficients because they
all involve products of two or more dz's and since dx is a dibbl the product of two or more
dz's is zero. The result, then, is (z + dx)" = 2" + nz™ 'dx, which is the statement of the
binomial theorem for z plus a dibbl taken to any power n.

Eq 3.4 gives, for y(z) = 2™

dy _ d(=")
de —  du
_ (@" 4 na"tdz) — 2"
B dz
nfld
= % =ng" ! (3.6)
T



Eq 3.6 is often called ”the power law”.
EXERCISE

dy

3.7 Calculate the derivatives y' = %Y (= means that the two expressions mean the same thing),

using the method of 3.6 when
(a) y(x) = 2%;

(b) y(z) = 5z';

(c) y(x) = 625 + 4zt

Show all of your work.

3.4 “DERIVATIVE” IS A FANCY NAME
FOR VELOCITY OR RATE OF CHANGE

EXAMPLE 3.1

Find an expression for the straight line that is tangent to the curve described by y(z) = 12° at
the the point x = 2. Show your work and graph the result.

Solution:

(1) Let y:(x) = a + bz be the equation for the straight line. Then our job is to determine the
values of the constants a and b.

(2) Since y;(x) is a tangent, it must have the same slope as y(x) at x = 2. The slope of y;(x)

is b (see Subsection 2.1.2). The slope of y(z) at any point z is 242

dx
(3) Atz =2 W) — 554 — 80 Gq pp — 80,
(4) Also, y;(z) and y(z) must be equal at the point of tangency, since they share the same point.
Soa+%r=1r"atz=2o0ra+ L =2 Thus, a = -2

(5) The solution is y;(z) = —12+8%  Fig 3.2 is a graph of the solution showing the tangent

7
line and the curve.

Recall why we are interested in the slopes of tangents to curves. As we pointed out in
Chapter 1 (after Fig. 1-3) “the slope of a line on a distance-time graph ... corresponds to
velocity”. So if we are given a function that relates distance to time, the derivative of that
function, being the the slope of the function, corresponds to the velocity as a function of
time. The next exercise makes use of that relationship.

EXERCISE

3.8 (a) A rock is hurled upward from a platform that is H meters (Hm) above the ground with
an initial velocity vy m/sec. We learn in physics that the height of the rock above the ground
at time ¢ after it left the platform is

h(t) = H + vt — ct? (3.7)
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x " FIG 3-2

where c is a constant. Find the velocity function v(t) of the rock. (Hint: use the method of the
previous section. Make sure that you treat "h” and "H" as two different symbols.)

(b) Find an expression for ¢,,, the time when the velocity function equals zero.

(c) Find an expression for the slope of h(t) at time t,,.

(d) Find an expression for the straight line that is tangent at time t,, to the curve described by
h(t) on a distance-time graph.

(e) Find an expression for the maximum value of h(t) as a function of ¢. (Hint: to check your
work, the answer to this part, when H =8 m; vy = 12 m/sec; and ¢ = 5 m/sec?, is 15.2 m.
(f) Make a graph of h(t) on the vertical axis against ¢ on the horizontal axis, using the values
in part (e). The horizontal axis should be at least 15 cm long, and the horizontal scale should
range from 0 to 4 secs. Calculate h(t) for at least 8 values of ¢.

3.9 Now let’s work out the equation for the tangent line to any power function. So let y(z) = cz"
where ¢ can be any constant and n is any positive integer. Write the tangent line, as before,
yi(z) = a + bx.

(a) Find the value of b at an arbitrary point z,. (Hint: b will be a function of ¢, n, andz,).

(b) Now find the value of @ and write your expression for y;(z).

(c) Check your result by letting ¢ and n take the values used in the example.

3.10 And, for an algebra brush-up, solve for t by completing the square at? + bt +c¢ = 0. Show
all your work.

3.5 ...AND, IN CLOSING

The ”dibbl” quantities dz, dy, etc. “whose squares are as good as zero” actually have a differ-
ent name in the mathematical literature, where they are known as infinitesimals (meaning
that they are infinitely small) or differentials (as distinguished from differences). They were



first introduced by Gottfried Wilhelm Leibniz (1646 -1716) a German contemporary of Eng-
land’s Sir Isaac Newton (1642 - 1727).. Textbooks often credit Leibniz and Newton with
inventing of the calculus. This credit is surely an exaggeration that we shall touch upon
again at the end of this book.

Leibniz was aware that his infinitesimals could not represent ordinary numerical quan-
tities. He knew, for example, that any finite number, no matter how large, times an in-
finitesimal was still an infinitesimal. He probably thought of dx as the distance between two
adjacent points on the z-axis of a graph. In this sense, a line passing through two points on
a curve that are separated by a distance dz is in fact tangent to the curve at a point.

Problem 3.8 shows that we now know how to find the derivative of any polynomial
function. Our next task is to explore some properties of derivatives in order to learn how to
find derivatives of more complicated functions.

3.5.1 PUZZLE CORNER
NO CREDIT BUT TRY IT ANYHOW

Two cars are approaching each other at a constant (relative) velocity of 60 mph (exact).
When the cars are exactly 3 miles apart a very fast fly leaves the bumper of one car and
travels toward the other at a speed (over the ground) of 120 mph. Upon reaching the second
car the fly immediately reverses direction. This continues until the cars collide. How far
did the fly travel?

ANSWER TO THE CHAPTER 2 PUZZLE

Divide the bricks into two piles of 3 and 1 pile of 2. Balance the two piles of 3. If one pile
is heavier than the other, the heavy brick is in the heavy pile. Otherwise it is in the pile of
2 bricks and may be found by weighing the two bricks against each other. So assume that
one of the piles of 3 is heavy.

Weigh two of the bricks from the heavy pile against each other. Then the either one brick
is heavy, or the heavy brick must be the third brick.

Question: Doesn’t this answer show how to find 1 heavy brick among 9 bricks in two
weighings?



