DOUBLE SLIT IN PHASE SPACE




The Wigner phase-space quasi-probability distribution function
QUANTUM MECHANICS LIVES AND WORKS IN
PHASE SPACE

A complete, autonomous formulation of QM based on the standard c-
number variables x and p and their functions in phase-space, which com-
pose through a special operation.



Three alternate paths to quantijation:

1. Hilbert space (Heisenberg, Schrodinger, Dirac)

2. Path integrals (Dirac, Feynman)

3. Phase-space distribution function of Wigner (Wigner 1932;
Groenewold 1946; Moyal 1949; Baker 1958; Fairlie 1964; ...)

fz,p) = /dy Y (z — gy) e WPy (7 + gy)

A special representation of the density matrix (Weyl correspondence).

Useful in describing quantum transport/flows in phase space ~» quantum

optics; quantum chemistry; nuclear physics; study of decoherence (eg,
quantum computing).

But also signal processing (time-frequency spectrograms); Intriguing
mathematical structure of relevance to Lie Algebras, M-theory,...



Properties of  [(x.p) = L / dy (@ — by) e Pp(a + L) -

M Normalized, /dpdacf(a:,p) =1.

v Real

e Bounded: —% < f(x,p) < % (Cauchy-Schwarz Inequality)
~» Cannot be a spike: Cannot be certain!

e p- Or x-projection leads to marginal probability densities: A space-
like shadow /dp f(x,p) = p(x); or else a momentum-space shadow
/d:p f(x,p) = o(p), resp.; both positive semidefinite. But cannot be
conditioned on each other. The uncertainty principle is fighting back ~»

% f can, and most often does, go negative (Wigner). A hallmark of
qguantum interference.
“Negative probability” (Bartlett; Moyal; Feynman; Bracken & Melloy).



Hiding through the uncertainty principle. Smoothing f by a filter of
size larger than h (eg, convolving with phase-space Gaussian) results
in a positive-semidefinite function: it has been smeared or blurred to a
classical distribution (de Bruijn, 1967). ~» Negative areas are small.

When is a real f(x,p) a bona-fide Wigner function? When its Fourier
transform L-R-factorizes:

Fe,y) = / dp PV (2, p) = g} (2 — hy/2) gnle + hy/2) |

92In f _ . :
(s otermy2y = 9): so g1, = gp from reality.

A Nevertheless, it 1s a distribution: it yields expectation values from
phase-space c-number functions.



In Weyl's association rule (1927), given an operator A(x,p) =
(o )Q/deO'dxdp A(x,p) exp(it(p—p)+ic(x—=x)), the corresponding phase-

space kernel function A(xz,p), obtained by p — p, x~— x, Vvields that
operator’'s expectation value,

(A) = /dwdp F(w,p) Az, D).

Dynamical evolution of f (Moyal):
Liouville's Thm, o:f +{f,H} =0, quantum generalizes to

ﬁ_H*f—f*H
ot ih ’

based on the x-product (Groenewold): y = 2(D20p=0p02) |

the essentially unique one-parameter (h) associative deformation of
Poisson Brackets of classical mechanics, (viz. h — 0). (Isomorphism:
AB = (o )Q/deJda:dp(A* B)exp(it(p—p) +ic(x—x)) . )




Systematic solution of time-dependent equations is usually predicated
on the spectrum of stationary ones. But time-independent pure-state
Wigner functions *x-commute with H.

However, they further obey a more powerful functional x-genvalue
equation (Fairlie, 1964):
th — th —

H(xap)*f(ajap) = H <$+ E apap_ 5 833) f(map)

= f(z,p) x H(xz,p) = E f(x,p) ,

which amounts to a complete characterization of them:

For real functions f(xz,p), the Wigner form is equivalent to compliance
with the x-genvalue equation (® and & parts).
(Curtright, Fairlie, & Zachos, Phys Rev D58 (1998) 025002)

— Projective orthogonality spectral properties

JrxHxg=FE; fxg=FEg f*g.
For Eg = Ey, = fxg=0.



Precluding degeneracy, for f =g,

JrxHxf=FE; fxf=Hx*fx]f,

—> fxfof.

fs x-project onto their space.

Ja* fp :% 5a,b Ja- I

e The normalization matters (Takabayasi, 1954): despite linearity of the
equations, it prevents superposition of solutions (this is not how QM
interference works herel).

/dpda: f*gz/dpd:c fg,

so, for different x-genfunctions,

/dpdm fg = 0.

~> Negative values are a feature, not a liability. Quantum
interference confined to “h-small’ regions.



NB — /H(:c,p)f(m,p) dxdp=E/f dedp = F .

NB ~ /f2 dxdp = 7 .
In general, < 1/h ~» quantum: fuzzy — classical: spiky.

e For any function, (|g|?) need not > 0.

But (g*+xg) >0 (— the uncertainty principle, AzAp > h/2
~ (Ax)2 4 (Ap)2 > k. Hides negative values).



v Pf

H(z,p) * f(z,p)

= ((p —ir 52)%/2m + v<az)) [y e OHEID @ Ly o+ )
1 h — h - h h
= 5 /dy ((p — i 02)%/2m+ V(z + Ey)> e P (z — S¥) Y@+ Zy)

= /dy e WP ((z Oy -I-?E 82)%/2m~+ V(z + 59)) P (z — 5?/) Y (z + Ey)
1 - h h
= Z/dy e "Wy (x — §y> E ¢(x + Ey) —

=FE f(z,p),

~Action of the effective differential operators on ™ turns out to be null.

frxH
— Z/dy e "YP (—(8;; ) 3:c)2/2m + V(z — Ey)> P (z — Ey) Y (z + Ey)

= F f(x,p).



Conversely, the pair of x-eigenvalue equations dictate, for f(z,p) =

JE

: 1 — h — h -
—iyp [ __~ _ 2 Ty —
/dy e ( 2m<ay i2 02) + V(x+ 2y) E) f(x,y) = 0.

~ Real solutions of H(x,p)x f(z,p) = E f(x,p) (= f(z,p) x H(zx,p))
must be of the Wigner form, f = /dy e WPY* (x — %y)zp(x -+ gy)/zw,
(s.t. Hy = Ev).

The wonderful fact: x-multiplication of c-number phase-space functions
is in complete isomorphism (Groenewold) to Hilbert-space operator al-
gebra.



SIMPLE HARMONIC OSCILLATOR

Solve divectly for H = (p? + z2)/2
(with Ai=1, m=1, w=1):
(G4 5002+ (0 — 20:)2 = 2B) f(2,p) =0,

Mere PDESs! Imaginary part: (zdp — pog)f = 0. ~ f depends on
only one variable, z = 4H = 2(z2 + p2). ~

< 2 —
(Z — 207 — 0z —E) f(z) = 0.
Set f(z) = exp(—z/2)L(z) — Laguerre’'s egn

(za§ +(1—2)0,+ FE — %) L(z) = 0.

Satisfied by Laguerre polynomials, L, = e?0"(e™%2z")/n!, for
n=F-—-1/2=0,1,2,... ~> eigen-Wigner-functions are

oz "

Lo =8H2—-8H+1,... O not positive definite.

e ?H 1. (4H); Lo=1, Li=1-4H,



Oscillator Wigner Function, n=3
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Dirac’'s Hamiltonian factorization for algebraic solution carries through
intact in x space:

H=(r—ip)x@+ip)+

so define

aziaz 1 aTziw—i
—\/5( + ip), —\/5( p)-

a*aT—aT*CL:l )



x-Fock vacuum:

a* fo= \/15(:1: + ip) we—@+r%) — o

Associativity of the x-product permits the customary ladder spectrum
generation; Hx f = fx H x-genstates:

fn o< (aT%)™ fo (xa)™ .

x real, like the Gaussian ground state;
~» left-right symmetric;
*x-orthogonal for different eigenvalues;

project to themselves, since the Gaussian ground state does, foxfog o fo .



TIME EVOLUTION

Isomorphism to operator algebras ~» associative combinatoric operations
completely analogous to Hilbert space QM.

~» %-unitary evolution operator, a “x-exponential”, Ux(x,p;t) = ZtH/h

wmﬁ (it/h)3
3

1+ (it/h)H(z,p) + Hx H + Hx H*H+ ..

flx,p;t) = U7 (a,p;t) « f(x, p; 0) x Us(z, p; t).

NB Collapse to classical trajectories,
dx rxH — Hxzx
— = = 8 H = ,
dt i P P
d x H — H %
dp _p | P_ 5 H—— .
dt i1h

x(t) = xcost + psint,

p(t) = pcost — xsint.



— For SHO the functional form of the Wigner function is preserved
along classical phase-space trajectories (Groenewold, 1946):

f(x,p;t) = f(xcost — psint,pcost + xzsint; 0).

Any Wigner distribution rotates uniformly on the phase plane around the
origin, essentially classically, even though it provides a complete quan-

o\

Am I

tum mechanical description. X In general, loss
of simplicity upon integration in = (or p) to yield probability densities:
the rotation induces shape variations of the oscillating probability den-
sity profile. NB Only if (eg, coherent states) a Wigner function
configuration has an additional axial x —p symmetry around its own cen-
ter, will it possess an invariant profile upon this rotation, and hence a
shape-invariant oscillating probability density.



THE WEYL CORRESPONDENCE BRIDGE

Weyl's correspondence map, by itself, merely provides a change of
representation between phase space and Hilbert space — Mutual
language to contrast classical to quantum mechanics on common
footing, and illuminate the transition.

1
(27)2

Ax,p) = /deada:dp a(z,p)explit(p —p) +ic(x —x)),

Inverse map (Wigner):

1 : h h
a(z,p) = — [ dy e P ({ x4+ —y| A(x, — — .
@) = o [y e (ot ol AGp) o~ 2o
PHASE SPACE HILBERT SPACE
Weyl
a — A
quantum | | quantum
a+b Groenewold | AB
classical h=0] | Bracken h=0
Weyl

ab —_— AoB



~> A plethora of choice-of-ordering quantum mechanics problems
reduce to purely x-product algebraic ones: varied deformations (ordering
choices) can be surveyed systematically in phase space. (Curtright &
Zachos, New J Phys 4 (2002) 83.1-83.16 [hep-th/0205063])

QUANTUM MECHANICS
IN PHRSE SPACE
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