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Abstract: Based on the infinite-dimensional algebras we have introduced, SU(∞) is identified
with general hamiltonian flows in 2-d phase-space, SO(∞) with flows generated by x-p-odd
hamiltonians, and USp(∞) with those of hamiltonians of special symmetry. Gauge theories for
SU(∞) , SO(∞), and USp(∞) are thus formulated in terms of surface (sheet) coordinates for
toroidal phase-space. Spacetime-independent configurations of their gauge fields directly yield the
quadratic Schild-Eguchi string action.

This is an eclectic summary of recent observations made with David Fairlie and Paul
Fletcher, with whom I introduced new infinite-dimensional algebras involving trigonomet-
ric functions in their structure constants[1]. The generators of the algebras we have intro-
duced are indexed by 2-vectors m = (m1, m2). The components of these vectors do not need
to be integers to satisfy the Jacobi identities, but we take them to be integral for the sake of
interpreting them as Fourier modes:

[Km, Kn] = r sin(k m× n) Km+n + a ·m δm+n,0 . (1)

Here, m×n = m1n2−m2n1, r and k are arbitrary (complex) constants, and a is an arbitrary
2-vector . The Casimir invariants are

∑
m

KmK−m ,

∑
m,n

eikm×n KmKnK−m−n , ... , (2)

∑ eik(m×n+m×p+...+m×r+n×p+...+n×r+...+p×r) KmKnKp...KrK−m−n−p...−r .

These algebras include as a special case that of SDiff0(T2), the infinitesimal area-preserving
diffeomorphisms of the torus[2,3]: r = 1/k in the limit k→ 0 yields the algebra

[Lm, Ln] = (m× n)Lm+n + a ·m δm+n,0 . (3)

You may find the supersymmetric extension of our algebra (1) and the observations to follow
in Ref.[1]. The representation and character theory of these algebras is an open problem.

The algebra (3) is known to be, in a particular basis optimal for the torus, that of the
generic area-preserving (symplectic) reparameterizations of a 2-surface. Taking x and p to
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be local (commuting) coordinates for the surface, and f and g to be differentiable functions
of them, a basis-independent realization for the generators of the centerless algebra is[2]:

L f =
∂ f
∂x

∂

∂p
− ∂ f

∂p
∂

∂x
=⇒ (4)

[L f , Lg] = L{ f ,g} , [L f , g] = { f , g} , (5)

where
{ f , g} ≡ ∂ f

∂x
∂g
∂p
− ∂ f

∂p
∂g
∂x

, (6)

the Poisson bracket of classical phase-space. The generator L f transforms (x, p) to
(x − ∂ f /∂p , p + ∂ f /∂x). Infinitesimally, this is a canonical transformation[4] generated
by f , which preserves the phase-space area element dxdp. This element is referred to as a
symplectic form and the class of transformations that leaves it invariant specifies a symplectic
geometry. You may regard it as the flow generated by an arbitrary hamiltonian f . For a
small patch of 2-surface, you may expand the functions f (x, p) in any coordinate basis you
choose. If the surface is a torus, I shall prefer a globally adequate coordinate system, such
as exp(inx + imp); if it is a sphere, spherical harmonics[3]; if it is a plane, powers[5]; and so
on. Nevertheless, for the infinitesimal transformations effected by the algebra generators in
a patch, any coordinate basis will do, and may be transformed to other ones. (When such
transformations are singular, however, a number of generators may be lost, leading to a
subalgebra, as noted by Pope and Stelle, and Hoppe[6].)

Choosing the torus basis, f = −ei(m1x+m2 p) and g = −ei(n1x+n2 p), 0 ≤ x, p ≤ 2π, yields

L f = L(m1,m2) = −iei(m1x+m2 p)(m1∂/∂p−m2∂/∂x) , (7)

which obey the centerless algebra in the basis (3). Conversely, given the basis (3), any func-
tion f (x, p) can be reconstituted through

f (x, p) = − ∑
m1,m2

F(m1, m2)ei(m1x+m2 p) , (8)

and thus the linear combinations

L f = ∑
m1,m2

F(m1, m2)L(m1,m2) (9)

are seen to obey the Poisson-bracket algebra (5).

We have found a corresponding realization for the torus-basis algebra (1) generators:

K(m1,m2) = (ir/2) exp(im1x + km2
∂

∂x
+ im2 p− km1

∂

∂p
)

= (ir/2) exp(im1x + im2 p) exp(km2
∂

∂x
− km1

∂

∂p
) , (10)

somewhat analogous to the one-variable realization found by Hoppe[3]. Note the triviality
in this realization of the Casimir operators, as the indices of each of their terms sum to zero.

To Fourier-compose this to a basis-independent realization, we first define, as in (9),

K f ≡ ∑
m1,m2

F(m1, m2)K(m1,m2) ≡
r
2i

f (x + ik
∂

∂p
, p− ik

∂

∂x
) , (11)
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where the last side of the equation is a formal expression to evoke (8)/(4): the “normal
ordering” of its derivatives is specified in its Fourier-series definition, in which they stand
to the right of all coordinates, by virtue of eq. (10).

The analog of the Poisson bracket in this case is the sine, or Moyal, bracket {{ f , g}}.
This is the extension of the Poisson bracket { f , g} to statistical distributions on phase-space,
introduced by Weyl[4] and Moyal[7b], and explored by several authors[7] in an alternative
formulation of quantum mechanics, regarded as a deformation of the algebra of classical
observables. It is a generalized convolution which reduces to the Poisson bracket as h̄, re-
placed by 2k in our context, is taken to zero:

{{ f , g}} =
−r

4π2k2

∫
dp′dp′′dx′dx′′ f (x′, p′)g(x′′, p′′) sin

1
k

(
p(x′− x′′)+ x(p′′− p′)+ p′x′′− p′′x′

)
.

(12)
The argument of the sine above is

1
k

det

( 1 p x
1 p′ x′

1 p′′ x′′

)
=

1
k

∫
p · dq , (13)

i.e. 2/k times the area of the phase-space triangle with vertices at (x, p), (x′, p′), and (x′′, p′′).
The antisymmetry of f with g is evident in the determinant. The sine brackets satisfy the
Jacobi identities[7d], just as their Fourier components (1) (see the next paragraph) do, and
thus determine a Lie algebra. These brackets help reformulate quantum mechanics in terms
of Wigner’s phase-space distribution[7].

The Fourier transform of the sine bracket results from substitution in (12) of the expo-
nential basis used in (7):

{{ f , g}}= −ir
8π2k2

∫
dp′dp′′dx′dx′′ ei(m1x′+n1x′′)+i(m2 p′+n2 p′′) ×

×
(

e
i
k (p(x′−x′′)+x(p′′−p′)+p′x′′−p′′x′) − (k↔ −k)

)
= −r sin(km× n) ei(m1+n1)x+i(m2+n2)p .

(14)
As in (9), it then follows through the linearity of the operators defined in (11), and (1), that
these indeed obey the algebra

[K f , Kg] = r ∑
m1,m2,n1,n2

F(m1, m2)G(n1, n2) sin(km× n) Km+n = K{{ f ,g}} . (15)

Our algebra is thus identified with that of sine brackets. Mutatis mutandis, you might wish to
expand it in alternate bases, such as spherical harmonics, so as to specify the corresponding
generalizations of SDiff0(S2), powers for the plane[8], and so on.

Focus now on an interesting centerless family of the algebras (1), namely the cyclotomic
family: the one for which k = 2π/N, for integer N > 2. In this family, there is an additional
ZZ × ZZ algebra isomorphism

K(m1,m2) 7−→ K(m1,m2)+(Nt,Nq) (16)

for arbitrary integers t and q. Since the structure constants sin 2π
N (m1n2− n1m2) are only sen-

sitive to the modulo-N values of the indices, the 2-dimensional integer lattice separates into
N × N cells, each of which may be referred to some fundamental cell, e.g. around the coor-
dinate center of the lattice, by proper N-translations. The fundamental N × N cell contains
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N2 index points, but the operator K(0,0), like its lattice translations KN(t,q), factors out of the
algebra: it commutes with all K’s and cannot result as a commutator of any two such. Thus
the fundamental cell involves only N2 − 1 generators, and there are no more structure con-
stants than those occurring in this cell. In consequence, the infinite-dimensional centerless
cyclotomic algebras, with the KN(t,q)’s factored out, possess the following finite-dimensional
invariant subalgebra of “lattice average” operators K:

K(m1,m2) ≡∑
s,v

K(m1+Ns,m2+Nv), [Km,Kn] = r sin(
2π

N
m× n) Km+n, (17)

where m,n,m+n are indices in the fundamental cell, and an infinite normalization has been
absorbed in r.

This (N2 − 1)-dimensional ideal specifies, in fact, a basis for SU(N) which may be
thought of as a generalization of the Pauli matrices[9]. Consider odd N’s first. A basis for
SU(N) algebras, for odd N, may be built from two unitary unimodular matrices:

g ≡


1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωN−1

 , h ≡


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

 , gN = hN = 11 , (18)

where ω is a primitive N’th root of unity, i.e. with period no smaller than N, here taken to
be e4πi/N . They obey the identity

hg = ω gh. (19)

You also encounter these matrices in the context of representations of quantum SU(2)[10].
The complete set of unitary unimodular N × N matrices

J(m1,m2) ≡ ωm1m2/2 gm1 hm2 , (20)

where

J†
(m1,m2) = J(−m1,−m2) ; TrJ(m1,m2) = 0 except for m1 = m2 = 0 modN , (21)

suffice to span the algebra of SU(N). Like the Pauli matrices, they close under multiplication
to just one such, by virtue of (19):

Jm Jn = ωn×m/2 Jm+n . (22)

They therefore satisfy the algebra

[Jm, Jn] = −2i sin(
2π

N
m× n) Jm+n . (23)

Consequently, in this convenient two-index basis with the above simple structure constants,
SU(N) describes the algebra (17) of the ideal {K}.

For even N, the fundamental matrices in (18) are not unimodular, as their determinant
may now be –1 as well. One might choose to modify them to

g ≡
√

ω


1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωN−1

 , h ≡


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−1 0 0 . . . 0

 , gN = hN = −11 ,

(24)
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with ω = e2πi/N ,
√

ω = eπi/N . They again obey (19), and again serve to define the unitary
basis

J(m1,m2) ≡ ωm1m2/2 gm1 hm2 , (20′)

Jm Jn = ωn×m/2 Jm+n . (22′)

The SU(N) algebra is now

[Jm, Jn] = −2i sin(
π

N
m× n) Jm+n . (25)

It might appear that the fundamental period be 2N instead of N. However, note that, by
virtue of the symmetry

Jm+N(t,q) = (−1)(m1+1)q+(m2+1)t Jm , (26)

only indices in the fundamental cell N × N need be considered. Illustrating this for N = 2 ,
the Pauli matrices, may be of use to the reader. Naturally, the algebra (25) also holds for N
odd, when ω = exp(2πi/N) is used in (18). Thus, the ideal (17) amounts to SU(N) for N
odd and SU(N/2) for N even.2 For example, both N = 3 and N = 6 yield SU(3), N = 12
yields SU(6)’s, etc.

In this basis again, the operators Q(m,n) ≡ J(m,n) − J(n,m) close to a subalgebra of SU(N)
with N(N − 1)/2 generators

[Q(m,n), Q(m′,n′)] = −2i sin
2π

N
(mn′ −m′n) Q(m+m′,n+n′) + 2i sin

2π

N
(mm′ − nn′) Q(m+n′,n+m′),

(27)
which is shown by reduction to the Cartan-Weyl basis[11] to amount to SO(N). Alterna-
tive SO(N)’s may also be found, such as the subset of the above Q(m,n) with m + n = even
together with the operators J(m,n) + J(n,m) with m + n = odd; or else, for even N = 2M,
J(m,n) − (−)n J(m,−n). Finally, the subalgebra of SU(2M): S(m,n) ≡ J(m,n) − (−)m J(m,−n) is seen
to be an USp(2M).

The 2-index SU(N) basis considered here has a particularly simple large N limit. As
N increases, the fundamental N × N cell covers the entire index lattice; the operators K
supplant the K’s and, in turn, since k→ 0, the operators L of eq.(3).

More directly, you immediately see by inspection that, as N → ∞, the SU(N) algebra
(23) goes over to the centerless algebra (3) of SDiff0(T2) through the identification:

iN
4π

Jm → Lm . (28)

An identification of this type was first noted by Hoppe[3] in the context of membrane physics:
he connected the infinite N limit of the SU(N) algebra in a special basis to that of SDiff0(S2),
i.e. the infinitesimal symplectic diffeomorphisms in the sphere basis. A discussion of the
group topology of SU(N), or SDiff0(T2) versus SDiff0(S2), or other 2-dimensional manifolds
for that matter[5], exceeds the scope of this type of local analysis; such a discussion has been
suggested in Refs.[6], which consider central extensions that are sensitive to global features
of the 2-surface.

In view of the SO(N) subalgebras described above, we may also simply identify the
SO(∞) subalgebra with the Poisson Bracket subalgebra whose shift potentials f are odd
under interchange of x with p — they correspond to hamiltonians which evolve even func-
tions to even ones, and odd to odd ones. Likewise, USp(∞) is generated by shift poten-
tials of the form exp(imx) sin(np−mπ/2), i.e. toroidal phase-space hamiltonians odd un-
der p 7−→ −p, x 7−→ x + π. (Merely p-odd hamiltonians generate the “sibling” SO(∞).)

2Actually, in this case[11], the generators describe SU(N/2)4, i.e. four mutually commuting SU(N/2)’s.
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Saveliev and Vershik[12], and we[11] have initiated a program of systematizing such results
in a unified framework common with that of the finite Lie algebras.

Floratos et al.[13] utilized Hoppe’s identification to take the limit of SU(N) gauge theory.
Their results are immediately reproduced without ambiguity, again by inspection, on the
basis of the orthogonality condition dictated by (21) and (22):

TrJm Jn = Nδm+n,0 → TrLmLn = − N3

(4π)2 δm+n,0 . (29)

As a result, for a gauge field Aµ in an SU(N) matrix normalization with trace 1, the analog
of eq. (9) is

Aµ ≡ Am
µ

Jm√
N
→ 4π

iN3/2 Am
µ Lm = Ãm

µ Lm , (30)

where summation over repeated m’s is implied, and I have defined Ãm
µ ≡ (4π/iN3/2)Am

µ .
As N → ∞, the indices m cover the entire integer lattice, so that I may define

a(x,p)
µ ≡ −∑

m

Ãm
µ ei(m1x+m2 p) . (31)

By eq. (5),
[Aµ, Aν] → [Laµ , Laν ] = L{aµ,aν} . (32)

Hence, by virtue of the linearity of L in its arguments,

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν] → L fµν

fµν = ∂µaν − ∂νaµ + {aµ, aν} . (33)

The group trace defining the Yang-Mills lagrangian density is then

TrFµνFµν → −
N3

(4π)2 F̃m
µν F̃−m

µν =
−N3

64π4

∫
dxdp ∑

m1,m2,n1,n2

eix(m1+n1)+ip(m2+n2) F̃(m1,m2)
µν F̃(n1,n2)

µν

= (−N3/64π4)
∫

dxdp f (x,p)
µν f (x,p)

µν . (34)

Thus, in the SU(∞) gauge theory, the group indices are surface (torus) coordinates, and the
fields are rescaled Fourier transforms of the original SU(N) fields; the group composition
rule for them is given by the Poisson bracket, and the trace by surface integration.

Now note an intriguing connection to strings which emerges, for the first time directly
at the level of the action: for gauge fields independent of xµ (e.g. vacuum configurations), this
lagrangian density reduces to {aµ, aν}{aµ, aν}, the quadratic Schild-Eguchi action density
for strings[14], where the aµ now serve as string variables, and the surface serves as the
world-sheet. This action amounts to the square of the sheet area and it is easily seen that its
equations of motion contain those of Nambu’s action. Thus, at zero energy, the gauge theory
reduces to a string. Whether a superstring follows analogously from the super-Yang-Mills
lagrangian is an open question.

The lagrangian (34) with the sine bracket supplanting the Poisson bracket is also a
gauge-invariant theory, provided that the gauge transformation also involves the sine in-
stead of the Poisson bracket:

δaµ = ∂µΛ− {{Λ, aµ}} , (35)

and hence, by virtue of the Jacobi identity,

δ fµν = −{{Λ, fµν}} . (36)
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It then follows that

δ
∫

dxdp fµν fµν = −2
∫

dxdp fµν{{Λ, fµν}} = 0 . (37)

At the moment, however, it is not clear what physical system is described by the corre-
sponding spacetime-independent lagrangian density {{aµ, aν}}{{aµ, aν}}. It is further ob-
scure whether a relation exists between the above theories and the Universal Yang-Mills
theory[15].

This compact formulation of SU(∞) gauge theory (and that of its subgroups) ought
to be of use in large-N model calculations, or various “master-field” efforts; membrane
physics[2,3]; and the exploration of connections between gauge theory and strings, as above.

I wish to thank the Ohio State University for its hospitality during much of this research.
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