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HOLOGRAPHIC INTERPOLATION

SMOOTH DYNAMICS FROM BOUNDARY CONDITIONS

How would you find rin(x), the functional square root of

rin(rin(x)) = sin(x)

?
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Consider the standard logistic map for the special chaotic case r = 4,

x1 = 4x(1 − x) ≡ f1(x),

where x ≡ x0. Can think of the iteration subscript as a discrete time,

and thus the map as a time-translation-invariant one, xt+1 = f1(xt) =

f1(ft(x)) = ft+1(x), an associative and commutative composition, 	.

Hemi-heuristically (1870), Ernst Schröder found a closed form solution

for all iterates, positive or negative,

ft(x) = sin2(2t arcsin(
√

x)),

essentially analytic in x.

; Could thus consider all t’s, including fractional, negative, con-

tinuous and infinitesimal ones.



Yields a phase-space orbit of ḟ(t) ≡ v(f(t)) vs f(t) ,
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; Can thus appreciate that this discrete map results out of a continuous

hamiltonian evolution driven by a potential!

V (x) = (ln 4)2x(x − 1)(nπ + arcsin
√

x)2.

◮ Caveat: actually, a succession of deepening potentials at each cycle,

n = (−)P ⌊1+P
2 ⌋. Switchbacks # chaos: stretching and folding.

Analogy to inverse scattering: initial and final profiles yield a potential.



In general, given an evolution profile of a function x(t) for a discrete

time interval, from t = 0 to t = 1, s.t. x(0) ≡ x, x(1) = f1(x), it is

straighforward to produce all integral iterates, 	, on an integer lattice

of time points, t = · · · ,−2,−1,0,1,2,3, · · ·: the splinter, of the map,

x(2) = f1 (f1 (x)) = f2 (x) ,

x(n) = f1 (f1 · · · (f1 (x))) = fn (x) ,

x(−1) = f−1
1 (x) = f−1 (x) ,

so x = f−1 (f1 (x)) = f1
(

f−1 (x)
)

, or more generally, x(k + n) =

fk (fn (x)) = fn (fk (x)), associatively and commutatively.

E.g., for f1(x) = x exp(x),
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⊚ Suppose, however, that, for reasons dictated by a physics context,

only an explicit nonlocal discrete propagation function f1(x) such as

this is available, but no time-local evolution law is specified.

THE PROBLEM: How does one obtain the complete, continuous

trajectory x (t) = ft (x) without benefit of a local relation?

E.g., holographic interpolation of f1(x) = x exp(x):
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⋔ Use the elegant construction pioneered by Schröder of an analytic

ft (x) around a fixed point of f1 (x).

◮ (Without loss of generality, take the fixed point to be x = 0.)

⋆ THE CONJUGACY FUNCTIONAL EQUATION

Schröder’s equation involves the auxiliary function Ψ,

sΨ(x) = Ψ(f1 (x)),

for some constant s 6= 1. With the origin a fixed point of f1, i.e.,

f1 (0) = 0, ; Ψ(0) = 0, and if Ψ′ (0) 6= 0,∞, then s = f ′
1(0).

The inverse function satisfies “Poincaré’s equation”,

Ψ−1 (sy) = f1
(

Ψ−1 (y)
)

.

Upon iteration 	 of the functional equation, Schröder’s Ψ acts on the

splinter of x to give

snΨ(x) = Ψ(fn (x)) = Ψ(f1 (f1 · · · (f1 (x)))) .



# This formula naturally yields a continuous interpolation for all

non-integer t,

stΨ(x) = Ψ(ft (x)) .

⋔ To produce the full, continuous trajectory, solve for Schröder’s function

Ψ(x), and invert to Ψ−1. This yields x (t) as a functional conjugacy

(similarity transform) of the st multiplicative map:

x (t) ≡ ft (x) = Ψ−1
(

st Ψ(x)
)

.

; In a suitable domain, this trajectory gives the iteration group 	: the

general iterate for any t, analytic around the fixed point x = 0.

XThis solution manifestly satisfies the requisite associative and abelian

composition properties for all iterates and inverse iterates. I.e.,

ft1+t2 (x) = ft1

(

ft2 (x)
)

, hence x (t1 + t2) = ft1 (x (t2)), as required for

time-translationally invariant systems.



Some specific cases:

f2 (x) = Ψ−1
(

s2 Ψ(x)
)

= Ψ−1 (sΨ(f1 (x))) = f1 (f1 (x)) ,

f1 (x) = Ψ−1
(

s1 Ψ(x)
)

= Ψ−1
(

s1/2 Ψ
(

Ψ−1
(

s1/2Ψ(x)
)))

=f1/2

(

f1/2 (x)
)

f0 (x) ≡ x = Ψ−1
(

s−1 Ψ
(

Ψ−1
(

s1Ψ(x)
)))

= f−1 (f1 (x)) ,

etc.

⊛ Crucial to note that in the limit s → 1, all iterates and inverse

iterates lose their distinction and degenerate to the identity map,

f0 (x) = x, and the method fails as stated. # If f ′
1 (0) = 1, augment

f1 (x) in Schröder’s equation to sf1 (x), and take the marginal s → 1

limit only at the very end of the calculation—if it makes sense to do

so.



With the full trajectory ft(x) now available, the velocity profile follows

v (x (t)) =
∂ft (x)

∂t
,

as an emergent feature: v(x) = ln s/(lnΨ(x))′.
(Of course, it was not available ab initio to integrate for the trajectory.

Had it been, Ψ would have followed by integration! cf. the Gell-Mann –

Low renormalization group.)

; For motion governed by a Lagrangian, L = 1
2mv2 − V (x), the corre-

sponding effective potential V (x), without explicit time dependence,

leading to this motion for fixed energy can be determined,

V (x) = −1

2
mv2 (x) + constant.



E.g., for f1 = x exp(x), (cf. the Ricker model — salmon!)
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⊛ WHAT IS THE MEANING of Ψ? It’s but the conjugacy variable

transformation w = Ψ(x) which trivializes the action of f1(x) to a

mere scaling w 7−→ sw, (“rectification”) ; trivial to iterate 	 ∀t:

x
f1−→ f1 (x)

Ψ(x) ↓ ↓ Ψ(f1 (x))

w
s−→ sw

N The composite map is then x 7−→ Ψ(f1(x)) = sΨ(x).

y Schröder appreciated his nonlinear conformal conjugacy equation is

hard to solve analytically in general; but, working backwards and utilizing

conformal mappings of monomials and simple trigonometric identities,

he found several closed Ψs and their corresponding f1s, like the logistic

map for r = 4,2,−2.



⋆ Procedure: For general functions like f1 = x exp(x), (f1 = sx exp(x)),

solve for the Taylor expansion coefficients of Ψ around x = 0, recur

sively in terms of those of f1(x), and set s → 1 at the very end.

(The nth coefficient of Ψ only depends on those of f1 of order ≤ n.)

Ψ (x) = x − 1
(s−1)

x2 + 1
2

3s+1
(s−1)(s2−1)

x3 − 1
6

16s3+8s2+11s+1
(s−1)(s2−1)(s3−1)

x4

+ 1
24

125s6+75s5+145s4+146s3+53s2+31s+1
(s−1)(s2−1)(s3−1)(s4−1)

x5 + O
(

x6
)

.

E.g., for s ≡ eε near 1, expanding in powers of ε,

ft (x)
∣

∣

∣

s=eε = Ψ−1
(

st Ψ(x)
)∣

∣

∣

s=eε

=
(

1 + tε + O
(

ε2
))

x

+

(

t +
1

2
(−1 + 3t) tε + O

(

ε2
)

)

x2

+

(

1

2
(−1 + 2t)t +

1

2
(−1 + 2t)2 tε + O

(

ε2
)

)

x3

+

(

1

12

(

5 − 15t + 12t2
)

t +
1

12

(

−7 + 35t − 56t2 + 30t3
)

tε + O
(

ε2
)

)

x4

+
( 1

24
(−2 + 3t)(5− 12t + 8t2)t +

1

72
(50− 315t + 673t2 − 621t3 + 216t4)ε

+O(ε2)
)

x5 + O(x6).



;

v (x)
∣

∣

∣

s=1
= x2 − 0.5x3 + 0.41667x4 − 0.41667x5 + 0.44583x6

−0.48056x7 + 0.50112x8 − 0.49163x9 + 0.45215x10 + O
(

x11
)

.

• Not singular at s = 1!

◮ Positive iterates upward convex with minima at x = −1.

> x = 0 point of unstable equilibrium in the effective potential.

� Negative times lead to f−1(x) = LambertW (x).

• Arbitrary functional roots. Indeed, full trajectories, velocities, &

potentials: x(noon) & x(now) ; x(all times)

y Applications to Switchback Hamiltonians illuminating chaos.

N to field theory holography: AdS/CFT?

Xto finite (conformal and) Renormalization Group y:



The finite-RG Gell-Mann–Low (1954) equation is structurally identical!

Schröder Functional Conjugacy ↔ Gell-Mann–Low (yLee)

Ψ(x(t)) ↔ G(g(µ))

t ↔ lnµ

s ↔ ed

Ψ(x(t)) = stΨ(x) ↔ G(g(µ)) = µdG(g(1))

so then y

g(µ) = G−1(µdG(g(1)))

β(g) ≡ dg(µ)

d lnµ
=

d

∂g lnG

lnµ =
∫ g(µ)

g(1)

dg

β
=

ln(G(g(µ))/G(g(1)))

d
,

ẋ(1) = f ′(x) ẋ(0) (Julia eqn) ↔ β(g(e)) =
∂f

∂g(1)
β(g(1)),

; Extrema of f(g(1)) imply zeros of β(g(e)), before obtaining G.



⋔ Take g(1) ≡ g, G(g) ≡ G. The RG dictates that scale translations

of g(µ) ≡ g(lnµ, g) and functions of it be encoded in motions of the

arbitrary initial condition g ≡ g(0, g): ∂
∂ lnµ = β(g) ∂

∂g, ; the scale

translation of g(lnµ, g) converts to translation of lnG, since its Taylor

expansion around lnM = 0 is

g(µ) = elnµ ∂
∂ lnM g(M)

∣

∣

∣

M=1
= e

lnµ β(g) ∂
∂g g = elnµ d ∂

∂ lnG g =

= elnµ d ∂
∂ lnG G−1(G)= G−1(µdG(g)),

the integrated RG, from a mere translation of the variable lnG by d lnµ!

⊠ Now, suppose a “step-scaling function” f is obtainable, e.g. from

lattice simulations, g(e) = f(g(1)). From this function, through our

procedure (holographic interpolation of Schröder’s eqn), the full g(µ)

and β(µ) can be reconstructed.

(One might further exclude aditional solutions based on periodic func-

tions: for any soln G(g(e)), there would be the whole (but noninvertible)

family of solns G(g)F (lnG(g)) for any periodic fctn F with period d.)
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X An exotic new feature: When G−1 involves a periodic function,

and a logarithmic function converting multiplication into shifts, g(µ) =

G−1(µG(g)) yields a limit cycle, i.e. periodicity of the physics in the

logarithm of the scale µ. Such situations do actually occur in physics!

> E.g., in the “Russian doll” superconductivity model of LeClair,

Roman, & Sierra: G−1 = tan log, so that

g(µ) = tan(lnµ + arctan g).

; The physics repeats itself cyclically in self-similar modules.

	 Spin-glasses exemplify chaotic renormalization.
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