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0 ≤ Sq ≤ ln

(

eσ2

2~

)

involving the variance σ2 in phase space of the classical limit distribution

of a given quantum system. No Hamiltonian required.

Intuitively plausible: ~→ 0 information forfeiture, augmenting ignorance.

; A fortiori, this further bounds the corresponding information-

theoretical generalizations of the quantum entropy proposed by Rényi.



Black Hole entropic behavior: collective flow of information in need of

robust estimates through gross geometrical and semiclassical features of

the system—instead of toilsome detailed accounts of subtler quantum

states.

; Combines the upper bound for the entropy of classical continuous dis-

tributions (Shannon, 1949) with the classical limit of intricate quantum

systems in phase space (Braunss 1994), which tracks the information

loss involved in smearing away quantum effects: The quantum entropy

of a system is majorized by that of its ‘ignorant’ classical limit.

• Illustrated by the elementary physics paradigm of a thermal bath of

oscillator excitations of one degree of freedom: its phase-space repre-

sentation is a (maximal entropy ∼ chaos) Gaussian.

• Extension to arbitrary degrees of freedom and tighter bounds according

to the circumstances of physical applications are conceptually straight-

forward.
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For a continuous distribution function f(x, p) in phase space, the

classical information entropy is

Scl = −
∫

dxdp f ln(f).

Given a f(x, p), without loss of generality centered at the origin,

normalized,
∫

dxdpf = 1, and

with a given variance, σ2 = 〈x2+ p2〉 =
∫

dxdpf(x2+ p2),

; elementary constrained variation of this Scl[f ] w.r.t. f , ;

it is maximized by the Gaussian, fg = exp(−(x2+ p2)/σ2)/σ2π, to

Sg cl = 1+ ln(πσ2).

• A Gaussian represents maximal disorder and minimal information.

In thermodynamics, least dispersal energy would be available.

; Shannon’s inequality,

Scl ≤ ln(πeσ2) ,

an upper bound on the lack of information.



• In general, Scl is unbounded above: it diverges for delocalized distribu-

tions (σ →∞), containing no information. In contrast to the Boltzmann-

Gibbs entropy, it is also unbounded below, given ultralocalized peaked

distributions (σ → 0), which reflect complete order and information.
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In quantum mechanics, the sum over all states is given by the standard

von Neumann entropy for a density matrix ρ,

0 ≤ Sq = −Tr ρ ln ρ = −〈ln ρ〉 .

V Transcribes in phase space through the Wigner transition map to

0 ≤ Sq = −
∫

dxdp f ln?(hf) ,

where Groenewold’s (1946) ?-product,

? ≡ e
i~
2 (
←
∂ x
→
∂ p−

←
∂ p
→
∂ x) ,

serves to define ?-functions, such as this ?-logarithm,

e.g., through ?-power expansions,

ln?(hf) ≡ −
∞
∑

n=1

(1− hf)n?
n

.



Braunss has argued that, for Sq+ lnh→ Scl as Planck’s ~→ 0,

0 ≤ Sq ≤ Scl − lnh .

• The logarithmic offset term relying on the Planck constant h accounts

for the scale of the phase-space cell area dxdp.

This scale, h, divides dxdp and multiplies f , to to yield dimensionless

entities which preserve ‘probability’, in the Wigner transition map from

the density matrix ρ to the Wigner Function f .

• E.g., for a pure state,

f(x, p) =
1

h

∫

dy ψ∗
(

x−
y

2

)

e−iyp/~ ψ

(

x+
y

2

)

.

The classical limit usually entails activity of phase-space variables much

larger than ~ ; Scale these variables down to scales matched to

such activity. Comparing quantum and classical entropies relies on this

offset.

t The upper bound in this Braunss inequality reflects the loss of quan

tum information involved in the smearing implicit in the classical limit.

(Sacrifice of the resolution needed to access the uncertainty.)



; Combined with Shannon’s bound, this now amounts to

0 ≤ Sq ≤ ln

(

eσ2

2~

)

,

i.e., the entropy is bounded above by an expression involving the variance

of the corresponding classical limit distribution function.

~ Readily generalizes to multidimensional phase space, and contexts

where more information (e.g., on asymmetric variances) happens to be

available, or refinement desired. (Bekenstein bound.)

• The quantum entropy is recognized as an expansion

Sq =
∞
∑

n=1

〈(1− ρ)n〉

n
=
∞
∑

n=1

〈(1− hf)n?〉

n
.

The leading term, n = 1, 1−Trρ2 = 〈1 − hf〉, is the impurity, often

referred to as linear entropy. Like the entropy itself, it vanishes for a

pure state, for which ρ2 = ρ, or, equivalently, f ? f = f/h.

; Each term in the expansion projects out ρ, or ?hf , respectively: pure

states saturate the lower bound on Sq.



RÉNYI ENTROPY

A likewise additive (extensive) generalization of the quantum entropy is

the Rényi entropy,

Rα =
1

1− α
ln〈ρα−1〉 =

1

1− α
ln

(
∫

dxdp

h
(hf)α?

)

.

• The limit α→ 1 yields R1 = Sq ; and the impurity is 1− exp(−R2).

For continuous distributions (infinity of components) discussed here, R0
is divergent.

> For α ≥ 1, Rα ≥ Rα+1, so Sq ≥ Rα, and it is also bounded below by 0,

Sq ≥ Rα ≥ Rα+1 ≥ 0 .

# A fortiori, the Rényi entropy is also bounded by the same bound.
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Consider the Gaussian Wigner Function of arbitrary half-variance E,

f(x, p, E) =
e−

x2+p2

2E

2πE
= e−

x2+p2

2E −ln(2πE).

This happens to be the phase-space Wigner transform of a Maxwell-

Boltzmann thermal distribution for a harmonic oscillator, in suitably

rescaled units, normalized properly to unity, and with mean energy

E = 〈x
2+p2

2 〉 .

Calculation of the entropy of this distribution, is, of course, a freshman

physics problem; review its independent phase-space derivation, evaluate

Sq directly.

For E = ~/2, the distribution reduces to just f0, the Wigner Function

for a pure state (the ground state of the harmonic oscillator). #

f0 ? f0 =
f0
h
,

; f0 is ?-orthogonal to each of the terms in the sum, and hence Sq =

0, indicating saturation of the maximum possible information content.

Trivially, 0 < ln(e/2) = 1− ln 2 ∼ 0.307.



For generic width E, the Wigner Function f is not that of a pure state,

but it still happens to always amount to a ?-exponential

( ea? ≡ 1+ a+ a ? a/2! + a ? a ? a/3! + ... ) as well,

hf = e−
x2+p2

2E +ln(~/E) = e
− β

2~
(x2+p2)+ln( ~

E cosh(β/~))
? ,

where an “inverse temperature” variable β(E, ~) is useful to define,

tanh(β/2) ≡
~

2E
≤ 1 =⇒ β = ln

E + ~/2

E − ~/2
.

(The above pure state f0 corresponds to zero temperature, β =∞.)

Since ?-functions, by virtue of their ?-expansions, obey the same

functional relations as their non-? analogs, inverting the ?-exponential

through the ?-logarithm and integrating yields directly the standard ther-

mal physics result:



Sq(E, ~) =
E
~
ln
(

2E+~

2E−~

)

+ 1
2 ln

(

(E
~
)2 − 1

4

)

= β
2 coth(β/2)− ln(2 sinh(β/2)).

# monotonically nondecreasing function of E, attaining the lower

bound 0 for the pure state E → ~/2 (β →∞, zero temperature).

The classical limit, ~→ 0 (β → 0, infinite temperature) thus follows,

Sq → 1+ ln(E/~) = ln(πe2E)− lnh = Scl(E)− lnh .

Explicitly seen to bound the expression for all E; saturating it for large

E >> ~, in accordance with Braunss’ bound. I.e., the upper bound is

saturated for Gaussian quantum Wigner functions with σ2 >> ~.

> The region E < ~/2, corresponding to ultralocalized spikes excluded

by the uncertainty principle, was not allowed by the above derivation

method, since, in this region, no ?-Gaussian can be found to represent

the Gaussian. (It would amount to complex β and Sq, linked to thermal

expectations of the oscillator parity operator.)



?-powers of the Gaussian are also straightforward to take, and thus the

Rényi entropies can also be readily computed:

Rα =
1

1− α
ln

(

(2 sinh(β/2))α

2 sinh(αβ/2))

)

=
1

α− 1
ln

(

(

E

~
+

1

2

)α

−

(

E

~
−
1

2

)α
)

.

• α → 1 checks with the above R1 → Sq. Also, in the pure state limit,

E = ~/2, it is evident that Rα = 0 checks for all α ≥ 1.

(For α > 1 and the small disallowed values E < ~/2, Rα < 0.)

Rα is also a nondecreasing function of E; and a nonincreasing function

of α. Up to an additive, α-dependent constant, the classical limit is

identical to that for the entropy itself,

Rα →
lnα
α−1 + ln(E/~) .

in agreement with the classical result.

It may well be that specific αs could provide more detailed or practical

measures of complexity in holographic BH physics with sparse infor-

mation available: gravitational physics confronting quantum random-

ness. Or when the Compton wavelength is invisible behind its own

Schwarzschild horizon!



N If a specific quantum Hamiltonian were actually available for

the system in question (rare), then the classical limit of the entropy

of the system would be straightforward ↪→ our inequality would not be

that powerful, since the classical entropy itself would be at hand, in gen-

eral lower than the Shannon bound.

For such simple systems, the upper-bounding classical entropy would

result out of the phase-space partition function specified by the corre-

sponding classical hamiltonian (the Weyl symbol of the quantum hamil-

tonian).

; Illustrated explicitly by hamiltonians which are positive N-th powers

of the oscillator hamiltonian,

fcl ∝ exp(−

(

x2+p2

2E

)N
).

By standard thermodynamic evaluation, the bounding classical entropy

reduces to just the Shannon entropy,

Scl =
1
N + ln

(

2πEΓ(1+ 1
N )
)

,

lower than the Shannon bound, 1 + ln

(

πE
Γ(1+2/N)
Γ(1+1/N)

)

.
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