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Abstract

The Standard Model is extremely succesful, but is viewed as a low-energy
effective theory rather than a fundamental theory. One problem in the Standard
Model is the so-called hierarchy problem, which involves loop corrections to the
Higgs self-energy. To avoid the precise fine tuning that such corrections require,
supersymmetry is introduced.

In this paper we draw an analogy to the chiral symmetry between the positron
and electron introduced to explain fine-tuning of the electron self-energy. In the
Minimal Supersymmetric Standard Model (MSSM), the Standard Model parti-
cles are assembled into chiral and gauge supermultiplets with their superpartners,
along with an extra Higgs doublet. We use the properties of the generators of
the supersymmetry algebra to deduce properties of particle states in the same
supermultiplet. Since Standard Model and MSSM particles are not found with
degenerate mass in nature, supersymmetry must be broken at some scale. We
discuss the supersymmetric and soft super-symmetry breaking terms in the La-
grangian.

1 Introduction

The SU(3)C × SU(2)L × U(1)Y gauge group of the Standard Model provides a very
successful phenomenological description of presently known high energy phenomena.[1]
The distance scale of the Standard Model is given by the vacuum expectation value of
the Higgs boson condensate. However, it is likely only a low-energy effective theory of
a more fundamental theory.

1.1 Motivation for Supersymmetry

1.1.1 Positron Analogue

In classical electrodynamics, an electron in vacuum has a Coulomb field around it. The
Coulomb field has the energy:

∆ECoulomb =
1

4πε0

e2

re

, (1)

where re is the “size” of the electron introduced to cut off the divergent Coulomb
self-energy. The electron mass receives an additional contribution from the Coulomb
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self-energy:

(mec
2)obs = (mec

2)bare + ∆ECoulomb (2)

From experiment, the electron is localized within re < 10−17 cm, so the self-
energy ∆ECoulomb is at least 10 GeV. Consequently the “bare” electron mass must be
negative to obtain the observed electron mass:

0.511MeV = −999.489MeV + 10000.000MeV (3)

Ignoring the conceptual issue of what a negative electron mass means, there is an
unnaturally finely-tuned cancellation between the “bare” mass of the electron and the
Coulomb energy.

This problem was resolved through the introduction of the positron, which doubled
the degrees of freedom in the theory. The Coulomb self-energy is represented by a
diagram in which the electron emits and reabsorbs a virtual photon. Now one can
consider vacuum fluctuations that produce an electron-positron pair from the vacuum
along with a photon. The electron in the vacuum can also annihilate with the positron
and the photon in the vacuum fluctuation. Then the electron remains as a real electron.

The contribution of this latter process to the electron self-energy is negative and
perfectly cancels the linearly divergent piece of 1/re of the Coulomb self-energy [2]:

∆Epair = − 1

4πε0

e2

re

(4)

Then in the limit re → 0, the leading contribution is:

∆E = ∆ECoulomb + ∆Epair =
3α

4π
mec

2 log
~

mecre

. (5)

The correction ∆E is proportional to the electron mass, so the total mass is pro-
portional to the bare electron mass:

(mec
2)obs = (mec

2)bare

(
1 + 3α

4π
mec

2 log
~

mecre

)
. (6)

The correction is only a fraction of the bare mass, and the correction depends only
logarithmically on the “size” of the electron. Even if this size is taken to be the Planck
length re = 1/MPl = 1.6×10−33cm, the correction is only a 9% increase in the electron
mass.

The correction is proportional to the mass because of the introduction of chiral
symmetry. In the limit of exact chiral symmetry, the electron is massless and is pre-
vented from acquiring mass from self-energy corrections. The non-zero electron mass
explicitly breaks the chiral symmetry, so the correction must be proportional to the
electron mass. [3]
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1.1.2 Higgs Self-Energy

In the Standard Model, the Higgs potential is:

V = µ2|H|2 + λ|H|4, (7)

where v2 =< H >2= −µ2/2λ = (176GeV)2 is the vacuum expectation value of the
Higgs. λ . 1 by perturbative unitarity, so −µ2 ∼ (100GeV)2. But µ2 receives a
quadratically divergent contribution from self-energy corrections. For example, the
Higgs doublet can split into a pair of top quarks and recombine to the Higgs boson
gives the correction:

∆µ2
top = −6

h2
t

4π2

1

r2
H

, (8)

where rH is the “size” of the Higgs boson and ht ≈ 1 is the top quark Yukawa coupling.
As with the positron, supersymmetry doubles the degrees of freedom by introducing

an explicitly broken new symmetry. In particular, the top quark has a superpartner
called the “stop”’ (scalar top), whose loop diagram cancels the leading piece in 1/rH

of the gives a contribution to the self-energy of the Higgs boson self-energy:

∆µ2
stop = +6

h2
t

4π2

1

r2
H

, (9)

This leaves the correction:

∆µ2
top + ∆µ2

stop = −6
h2

t

4π2
(m2

t̃ −m2
t ) log

1

r2
Hm

2
t̃

. (10)

For ∆µ2 to be the same order of magnitude as the tree-level value µ2 = −2λv2, m2
t̃

must be near the electroweak scale. This naturalness constraint on the superparticle
masses also applies to the other superpartners that couple directly to the Higgs doublet.

Besides supersymmetry, there exist other solutions to fine-tuning of the Higgs bo-
son mass-squared term. For example, technicolor replaces the Higgs doublet with a
composite techni-quark condensate, so that rH ∼ 1 TeV is the true physical size of
the Higgs doublet and no fine-tuning is needed. Alternatively, large extra spatial di-
mensions have been proposed to lower the Planck scale to the TeV scale. Fortunately,
these ideas all make predictions that will be tested at future colliders such as the LHC.

2 Supermultiplets

The generator of supersymmetry Q must be an anticommutating spinor such that:

Q|Boson >= |Fermion > (11)

Q|Fermion >= |Boson > (12)
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Because Q and Q† are fermionic operators, each carries spin angular momen-
tum 1/2. They must satisfy the (anti)commutation relations: {Q,Q†} = P µ, {Q,Q} =
{Q†, Q†} = 0, and [P µ, Q] = [P µ, Q†] = 0, where P µ generates spacetime transla-
tions [4].

In supersymmetry the original Standard Model multiplets are extended to super-
multiplets, which are irreducible representations of the supersymmetry algebra. A
supermultiplet contains both fermions and bosons, which are superpartners of each
other.

The (mass)2 operator −P 2 commutes with Q, Q†, and with the spacetime rotation
and translation operators. Hence all particles in the same supermultiplet have the same
eigenvalues of −P 2, i.e. they all have the same mass.

In addition, Q and Q† commute with the generators of gauge transformations.
Hence all particles in the same multiplet transform in the same representation of the
gauge group. This means that they all have the same electric charge, weak isospin,
and color degrees of freedom.

Lastly, it can be shown that there are equal number of fermionic and bosonic degrees
of freedom in each supermultiplet. Consider the operator (−1)2s, where s is the spin
angular momentum. This operator has eigenvalue +1 for a bosonic state and -1 for
a fermionic state. Now (−1)2s anticommutes with Q and Q†. Let |i > index the
states in a supermultiplet with the same eigenvalue pµ of the operator P µ. Using the
anticommutation relations, as well as the completeness relation

∑
i |i >< i| = 1, one

can show that: ∑
i

< i|(−1)2sP µ|i >= 0. (13)

But this is equal to pµTr[(−1)2s]. This is in turn proportional to nB − nF , where nB

and nF are the number of bosonic and fermionic degrees of freedom. Thus nB = nF

for pµ 6= 0 in each supermultiplet.

The simplest way to build a supermultiplet that satisfies the above requirements is
to combine a Weyl fermion (which has two helicity states, so nF = 2) with a complex
scalar field. This is called a “chiral supermultiplet”.

The next simplest way is to combine a massless spin-1 vector boson (two helicity
states, so nB = 2) with a massless spin-1/2 Weyl fermion (two helicity states, so
nF = 2). Note that the boson must be massless and the fermion must be massless and
spin-1/2 (as opposed to spin-3/2) in order to preserve renormalizibility of the theory.
This is called a “gauge supermultiplet”.

Lastly, we have to introduce an additional Higgs doublet, so there are now two
such doublets with hypercharge Y = ±1

2
. This is necessary to prevent triangle gauge

anomalies, which manifest themselves in terms proportional to Tr[Y 3] and Tr[Y ].
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3 Minimal Supersymmetric Standard Model

The extension of the Standard Model with minimal particle content is called the Min-
imal Supersymmetric Standard Model. The superpartners of the gauge bosons are
called “gauginos”, and the superpartners of the leptons are called “sleptons”. The
prependage of “s” stands for “scalar”. Similarly, superpartners of quarks are called
“squarks”.

The total particle content can be organized into the following two tables:

Chiral Supermultiplets Spin 0 Spin 1/2 SU(3)C × SU(2)L × U(1)Y

Squarks, quarks (×3 generations) Q (ũL d̃L) (uL dL) (3, 2, 1
6
)

ū ũ∗R u†R (3̄, 1, −2
3
)

d̄ d̃∗R d†R (3̄, 1, 1
3
)

Sleptons, leptons (×3 generations) L (ν̃ ẽL) (ν eL) (1, 2, −1
2

)

ē ẽ∗R e†R (1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) (1,2, +1
2
)

Hd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1,2, −1

2
)

Gauge Supermultiplets Spin 1/2 Spin 1 SU(3)C × SU(2)L × U(1)Y

Gluino, gluon g̃ g (8, 1, 0)

Winos, W bosons W̃± W̃ 0 W± W 0 (1, 3, 0)

Bino, B boson B̃0 B0 (1, 1, 0)

4 Supersymmetric Lagrangian

Let the chiral supermultiplet φ denote three fields: a complex scalar field A, a Weyl
fermion 1−γ5

2
ψ, and an auxiliary complex field F . The Kähler potential contains the

kinetic terms for φ in the Lagrangian[3]:∫
d4xφ∗i φi = ∂µA

∗
i∂

µAi + ψ̄iiγ
µ∂µψi + F ∗

i Fi (14)

.
Since F does not contain derivatives, it can be solved for explicitly and eliminated.

In particular, the superpotential is a homomorphic function W (φ) of the chiral super-
multiplets φ. It contributes to the Lagrangian:

−
∫
d2xW (φ) = −1

2

∂2W

∂φi∂φj

∣∣∣∣
φi=Ai

ψiψj +
∂W

∂φi

∣∣∣∣
φi=Ai

Fi (15)

If we solve for F then:
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F ∗
i = − ∂W

∂φi

∣∣∣∣
φi=Ai

. (16)

Eliminating F in the Lagrangian yields:

− VF = −
∣∣∣∣∂W∂φi

∣∣∣∣2
φi=Ai

. (17)

Let Wα be a gauge multiplet, the generalization of the gauge bosons. It consists
of three components in the adjoint representation of the gauge group, indexed by a.
These are a Weyl fermion λ (gaugino), a vector gauge field Aµ, and an auxiliary real
scalar field D. Their kinetic terms are:∫

d2xW a
αW

αa = −1

4
Fµν + λ̄ai 6Dλa +

1

2
DaDa. (18)

As with F , the field D does not contain derivatives, so it can be eliminated from the
Lagrangian as follows.

To preserve gauge invariance of the Lagrangian, chiral supermutiplets that trans-
form non-trivially under the gauge group should also couple to the gauge multiplets.
Then the Kähler potential is modified to:

∫
d4xφ†ie

2gV φi = DµA
†
iD

µAi + ψ̄iiγ
µDµψi +F

†
i Fi−

√
2g(A†T aλaψ)−gA†T aDaA (19)

Eliminating D in the Lagrangian yields:

− VD = −g
2

2
(A†T aA)2 (20)

Now the potential terms VF and VD that we have solved for determine the super-
symmetric Lagrangian. By the non-renormalization theorem of the superpotential, no
superpotential mass terms can be generated by renormalizations.

As a simple example, suppose there are two chiral supermultiplets φ1 and φ2 with
a superpotential

W = mφ1φ2. (21)

Then the Dirac fermion components have mass terms in the Lagrangian:

− 1

2

∂2W

∂φi∂φj

ψiψj = −mψ1ψ2. (22)

The two complex scalars have a mass term:

− ∂W

∂φi

∣∣∣∣2
φi=Ai

= −m2|A1|2 −m2|A2|2. (23)

Thus we see that the fermionic and bosonic components are degenerate with the
same mass m, as we showed previously.
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5 Soft Supersymmetry-Breaking Lagrangian

Superpartners with the same mass as the Standard Model particles have not been ob-
served, so supersymmetry must be a broken symmetry.[4] There are various techniques
to spontaneously break supersymmetry. However, for a low-energy effective theory, it
suffices to simply add terms to the supersymmetric Lagrangian that explicitly break
supersymmetry.

These terms must keep the Higgs mass-squared only logarithmically divergent, since
that is the original motivation for supersymmetry. They have all been classified for a
renormalizable superpotential:

W =
1

2
µijφiφj +

1

6
λijkφiφjφk. (24)

The soft supersymmetry breaking terms can have the forms: m2
ijA

∗
iAj,Mλλ, 1

2
bijµijAiAj,

and 1
6
aijkλijkAiAjAk.

The first term gives mass to the scalar components in the chiral supermultiplets,
removing degeneracy between the scalars and spinors. The second term gives mass
to gauginos so that they are no longer degenerate with gauge bosons. The final two
terms, which have parameters bij and aijk of mass dimension one, are the bilinear and
trilinear soft breaking terms.

As a calculational example, consider the coupling of the Higgs chiral supermultiplet
H to left-handed Q and right-handed T chiral supermultiplets, given by superpotential:

W = htQTHu. (25)

This contributes to the Lagrangian:

htQTHu − h2
t |Q̃|2|Hu|2 − h2

t |T̃ |2|Hu|2 −m2
Q|Q̃|2 −m2

T |T̃ |2 − htAtQ̃T̃Hu. (26)

where m2
Q, m2

T , and At are soft parameters, the fields Q and T are spinor components

of the chiral supermultiplets, and Q̃, T̃ , and Hu are the scalar components.
The field Hu can be shifted around the vacuum expectation value, generating mass

terms for the top quark and scalars. Its one-loop self-energy diagram can be calculated.
The diagram with a top quark loop from the first term contributed to the Lagrangian
is negative and quadratically divergent. The contractions with Q̃ or T̃ in the following
two terms provide positive contributions. If we had m2

Q = m2
T = 0, then these two

contributions would cancel each other exactly. They are not zero, but for simplicity
suppose m2

Q = m2
T = m̃2. Then the correction is:

δm2
H = − 6h2

t

16π2
m̃2 log

λ2

m̃2
, (27)

where Λ is the UV cutoff for one-loop. This is only logarithmically divergent. Similarly,
the diagrams with two htAt couplings with a scalar top loop are only logarithmically
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divergent as well. Thus we see that the mass-squared parameters are in fact “soft”
because they don’t have power divergences.

6 Conclusions

The Minimal Supersymmetric Standard Model provides a viable solution to the Hierar-
chy Problem. The corrections to the Higgs self-energy from internal loops of Standard
Model particles are cancelled those of their superpartners, resolving the unnatural fine-
tuning that otherwise appears.

However, there are alternative solutions to the Hierarchy Problem: technicolor and
large extra dimensions. Future high energy experiments at the LHC and beyond will
determine which of these theories, if any, is correct.
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