What's New in String Theory?

Steven S. Gubser

LLots of course, including the following:

e Flux compactifications [Kachru-Kallosh- Linde-Trivedi]:
a huge enough number to solve cosm. const.
problem?

e Light cosmic strings [Copeland-Myers-Polchinski]:
suggested by flux compactifications, may be
observable.

e Light strings in preheating [Gubser]: a natural
but stringy mechanism of reheating.

e String-inspired modification of CDM [Gubser-
Peebles]. scalar-mediated forces might alter struc-
ture formation.

Mainstream of thought on particle phenomenology
is still driven by low-energy SUSY and by GUTSs.



Flux compactifications

The Good News: Now we can stabilize all moduli
of certain Calabi-Yau constructions, break super-
symmetry, and get a small cosmological constant.

The Bad News: The constructions are compli-
cated, and small A is achieved with a shot-gun
approach which may limit predictivity.

Compactification on a C'Y3 takes us from 10-dim
to 4-dim. The CY3 has moduli.

Complex
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A priori these are all massless. After SUSY break-
ing, Size tends to run to oco: decompactification.



1) Well-established flux superpotential can stabi-
lize €2 and T:

Wtree=/G3/\Q Gz = F3 —71H3. (2)

Choice of G3 roughly amounts to wrapping 5-
branes and then letting them *“dissolve” into flux.

2) Instantons or gaugino condensation on other
wrapped branes can stabilize p:

W = Wiree T Aeiapa (3)
where second term is due to (A\) ~ e=87 /9y N,

with p=%+g§2‘/—§4.

But the result of 1) and 2) is unbroken SUSY and
Ng < O.

3) Anti-D3-branes can break SUSY and raise A:

A= Ao+ D3¢ (4)

where the warp factor e can vary over the CY3:

ds® = e*M(—dt® 4+ di®) + e *dsdy, . (5)



End picture is complex:
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and the key point is that we have huge but dis-
crete freedom in choosing G3 € H3(CY3,7Z): we
can easily try 10190 choices if dim H3 = 100. So
small A can be arranged. This is the ‘shotgun”
approach.



Light cosmic strings

An old objection to fundamental strings as cosmic
strings is

Gr =103 for fundamental strings (6)

Gr <1072 for cosmic strings,

where the second inequality comes from anisotropies
in the CMB.

This can be solved in the flux compactification
picture thanks to severe warping:
G’-Z;_HN 1673 (fundamental Str 5“35)
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This is not a fine-tuning: dualtoa SU(N)xSU(M)
gauge theory which confines at a scale < Mpy:

the cosmic strings in question are basically the flux
tubes of this gauge theory.
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A further objection based on axionic domain walls
iIs removed by a further feature of flux compacti-
fications: orientifold planes based on a Z-, which
projects away the axion.
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A signal for such strings could come from bursts
of gravitational radiation produced by cusps:
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and LIGO might see this signal for Gr = 10— 11



Light strings in preheating

We typically think of creating cosmic strings through
the Kibble mechanism (i.e. in a phase transition).
What about quantum production of individual vi-
brational modes?

The on-shell constraint Lg|¢pnys) = 0 amounts ap-
proximately to

X +w'x =0, (7
where
w? = k% + m? m? = N/a'. (8)

If o/ varies with time, so does w?, and positive fre-
quency modes for (7) evolve into a mix of positive
and negative frequency: string creation.

e How might 7 = 1/27a/ vary after inflation?

e Most useful answer is for strings in 4-dim coming
from wrapped branes in 10-dim.



Consider D3-branes wrapped on an S2 whose com-
plexified volume is

O X /SQ(BQ + iJ>) (a Kahler modulus). (9)

If S2 shrinks we have light strings in 4-dim. Start-
ing from

Sps = —TD3/d4g\/GW +Buw+..., (10)

with 7p3 ~ 1/(a’?gs), obtain

M
Teff &~ M|  with M~ % (11)
ds

where ¢ has been rescaled to be canonically nor-
malized. (11) is typical for light strings.

String creation after inflation might proceed via a
“fly-by” of a point where strings are tensionless:
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reff ~ Mo + ¢t| = My/|gol? + (jgl)2.  (12)
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To estimate string creation, use a steepest descent
trick:

w? = m? < Terf = 0 for t = —ip = —i|pgl/|P|

8|2 & e~ (0) (13)

To get the total number of strings produced, we
sum over the Hagedorn spectrum:

dN 1
T X EVGE/TH 3 Ty = ) 14
db 2m\/a'c| /6 (14)

00 dN o0

String production is

1
exponentially suppressed if Ty > —
" (16)
exponentially enhanced if — > Ty .
uy?

The borderline case is when

3/2
min

(Mpg)3/? =7

Assuming ¢ ~ Mp| gminfiaton 1S reasonable for oscil-
lations of amplitude Mp) 4 and frequency mipfiaton-

= My ~ M Mp| 4minflaton - (17)



Further estimating

M ~ 10Mp 4 Mpi 4

} = /Tmin S 50 (18)

—5
Minflaton ~ 10 MPI,4

in order for strings to be copiously produced right
after inflation.

Comparison to preheating (coherent production of
bosons through parametric resonance driven by in-
flaton oscillations):

e Causes an even more sudden reheating of the
universe.

e Less contrived: (18) is not implausible, and
tensionless strings occur on codimension two
loci in moduli space.

e Similarly unconstrained by current observations.
Speculate that decay of these strings would cause

non-gaussian spectrum of gravitational waves, but
I don’'t have an estimate for LIGO.



String-inspired modication of CDM

Strings and preheating relied upon rolling scalars
at 1013 GeV: no conflict with Flux compactifications.

But the next set of ideas hinges on very light
scalars: if we have to work so hard to get rid of
them, why not use them?

Scalar-mediated forces cause like particles to at-
tract and unlike particles to repel. Consider for
example strings winding or moving around a com-
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If these forces are comparable to gravity, struc-
ture formation might happen differently than in
the CDM model.



In general, assume several species of dark matter
particles with force law

Gmpm
bpqg = 5pq# (19)
between particles of species p and ¢q. Gauge con-
tributions to @By don't change structure formation
(Debye screening), but scalars do:

o e
@ 0 Yo

C.harse
adiabatic VS Separation

o Adiabatic mode grows as t2/3: good match with
observations.

e Separation mode grows faster if 81o < 0: i.e. if
scalar forces are stronger than gravity.

e Naive string theory computation gives 31, = —1.
e String theory sits near the border of an observ-
able effect for the linearized regime.



Can allow rather strong scalar forces if they're
screened at a scale rs comparable to galaxies.

Such forces may ameliorate some problems with
CDM. For example, if m; <« mo, get an intrigu-
ing phenomenon of light vs. heavy halos in bound
structures.
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Central object is bound by scalar forces, and is
much smaller than CDM predicts.

This may be a way of suppressing dwarf galaxies
but leaving enough small dense objects to explain
recent anomalies in lensing around quasars.



Summary

e One theme in recent string theory develop-
ments has been connection with cosmology.

e Moduli (massless scalars) continue to fasci-
nate, either as heroes or villains.

e Hoping for signals at LIGO, or successes in
structure formation.

e With many powerful theoretical tools in hand,
still need to focus on the simple and robust
features of string theory.
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