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Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures
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By applying different symmetric boundary conditions, we found that the transverse wakefields generated by
an electron bunch traveling through a partially loaded rectangular dielectric structure at an off center position
can be decomposed into corresponding orthogonal longitudinal section ele&Egand longitudinal section
magnetic(LSM) modes for guided waves as in the case of longitudinal wakefields treated previously. The
wakefields are characterized using the normalized shunt impedRiigea function of the geometry of the
accelerating structure, for both LSE and LSM modes. A numerical example is given ¥6band waveguide
structure and detailed results are given for the several leading transverse wakefield terms. The analytic results
obtained are in agreement with the results from the time domain simulatiomieol ®.
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In our previous papefl], we have given a detailed de- face. This corresponds to assuming the transverse direction
scription of wakefields generated by a bunched relativistido the interface normal vector to be the direction of propaga-
beam passing through the center of a partially dielectridion. A short electron bunph traveling through dielectric-
loaded rectangular waveguide structure. However, a comloaded rectangular waveguide at a transverse offestyf)
plete treatment should also include transvédipole) wake-  Will excite both x- and y-dipole modes in Wh'C?(‘d'p‘)'e
field effects since these fields can cause severe beam insfii0de can be expressed as superposition of iy ﬁnd
bilities. Previous treatmenf&,3] of the transverse wakefield LSEwh (m=2,4,6;--) modes andy-dipole as LSNE*™
effects in similar structures did not include all cases and useand LSEsn (m=1,3,5;--) modes. Here, the superscript
a complicated mathematical formalism. In this paper, we ex{shord or (open refers to short ;=0) or open symmetric
tend our previous work to include transverse wakefields exboundary conditions at the midplane of the rectangular
cited by a beam traveling with offsets in both tkéhorizon- ~ Waveguide as shown in Fig. 1. _
tal) and theY (vertica) directions. We will show that the ~ Computation of dipole modes by the summation of the
transverse wakefields in this type structure can be calculategP"reSPonding LSE and LSM modes is based on the relation
using both the transverse resonance and the mode matchihgmeen system response and signal excitation. The wave-
methodg 4] which are used to construct theandY dipole guide c0n5|dereq here' IS a passive system, and. the t["’“’e"“g
modes. Rather than solving the bunch-excited fields througﬁ_lec’[ron bunch is equivalent to be a point particle wih
Maxwell's equations directly, the wakefields can be ex- &V (2= vt) (X~ Xo) 5y o).

d i ) Following a similar procedure to that of RéfL], we can
Pressed as a sum over waveguide paranm@r, or equiva-— ghtain the dispersion relations of the open and short central
lent of loss factor in most literaturéa function of the struc-

C o plane cases, respectively, through the transverse resonance
ture geometry only for each mode. The summation is an method[4] as follows:
infinite series and it can be truncated by the finite bunch

length of the drive beam, as in case of most wakefields cal- for open central plane case
culations. One should point out that a similar meth8pwas (0) o) 1) 1) B
used to find loss factors and wakefields of metal periodic = Zomn COUKym @) + Zgmntar kymy(b—a)]=0,
rectangular structures. In this paper, we first give an analyti- (18
cal theory and then a numerical example for ¥#band
dielectric-loaded accelerating structure, and finally a com- for short central plane case
parison with results from the commercial wakefield simula- (0) 0) oy 7(1) D) (e a)]—
tion codeMAFIA® is given to check the validity of our cal- Zomntankym@) + Zomptar kyn(b—a)]=0,
culations. (1b)
As can be inferred from the geometry shown in Fig. 1, the

LT ; . : . “where
intrinsic modes in a dielectric-loaded rectangular waveguide
are either LSM(longitudinal section magnetior LSE (lon- Kl KD

. . . . (0) _ymn (1) __ymn
gitudinal section electricmodes that, respectively, have no ZOmn—g, Zomn‘m (LSMyp)
H or E components normal to the vacuum-dielectric inter- 0 0%s

and
. . . w w

*Present address: Electro Magnetic Applications Inc., Lake- ZB?%n:$, E)%%n:% (LSEqn,

wood, CO 80226, USA. Kymn Kymn
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FIG. 1. Dielectric-loaded rect-
angular guide with symmetrical
boundary condition; (a) open
plane case fox-dipole mode com-
putation, andb) short plane case
for y-dipole mode computation.
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are the values of the characteristic impedances of each mode. _ 92 )
The transverse propagation constants are expressed in terms Ey=-1] ope a_y2+'8 e, Hy=0,
of the longitudinal propagation consta@t,, using the fol-
lowing conditions: 1 g2 1 P
E,= _j &1 H,= l/Ie ) (38)
0)2 m 2 woue dyoiz ,LL X
k§’mn kO Ian (23) .
LSE mode: = ayin(X,y,z)
and 1y Moo 1 &y
2 mar X“e gz’ X__Jw,u,s axay'’
k§/1r%n kO ( an’ (Zb)
32
whereky=2mf/c is the propagation constant in free space Ey=0, Hy=-] w,w( ay? A )"bh'
and the superscrigd) or (1) refers to the vacuum or dielec-
tric region of the waveguide, respectively. 1oy 1 P,
The field components of the LSRR, LSEOPeM) Br=—C 5 H=~) wpme dy 9z’ (3b)

LSMEM and LSES"™ modes in a dielectric-loaded rect- _ .
angular waveguide can be derived from the solution of vecwhere, and ¢, must satisfy the scalar wave equations

tor potential wave equations: V2yy(%y,2)+ BPg(x,y,2)=0, q=eh. (4)

LSM mode: = ayie(X,y,2) Applying the boundary conditions at the perfectly con-
5 ducting guide wallsX= =w/2, y=b) and the boundary con-
E—_i 1 e Ho— 1 dge dition at the magnetic or electric waly & 0), the potential
x= ) wpe Ixay' X w dz’ functions ¢, for open short modes are

m .
AloPeN gin—" xS sink{%) ye 1An?  0<y<a
g = o
mm ,
Bﬁﬁﬁe”sinv X+ coskg,lnﬁn(b—y)e‘”’mnz, a<y<b
and
M .
Alshor gjn— TELE] cosk%rye_‘ﬁmnz, 0<y<a,
hory _
wésmn - (Sb)
pg(short sinm X+ — COSk(l) (b— )e*jﬁmnz a<y<b
mn w 2 ymn y ! '
where
AP g, coski) (b—a) o Ao e, coskll) (b—a)
0 A 0
Bopen — sink{» A BT coskima

In each region, the fields for the L&E®™ or LSE"™ are derived from a magnetic-type potential function. Using the
boundary conditions at the conducting guide wakls=(*w/2, y=b) and the boundary condition at the magnetic or electric
wall (y=0), the potential functiongy, are
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1 mar w .
Ciepel——cos—| x+ = |cosk{%) ye 1Fm?,  0<y<a
(open _ Jopo w 2
hmn (Ga)
(open__ COST X+ — smk(l) (b—y)e 1hmZ a<y<b
T W 2 ymn ,
and
mar .
ﬁﬁﬂ"”’.—cos—(er— sink{ye 1#n?,  0<y<a,
(shory _ lopo w 2
‘l/hmn mar w (Gb)
Do~ cos— | x+ = |sinkY) (b—y)e ifmZ  a<y<b,
LIRS W 2 ymn( y) y
where
Ciope?  sink{p) (b—a) g C|Short _sinkjp(b—a)
= an
D(open cosk(m ) a D sink(%) a

Substituting these potential functions into E8), thez component of the electric field in the vacuum region can be written
as follows:

ELPEX,Y,2) = AR~ B SN | x5 | c0SKihy expt — B2), 7a
ELPeR(x,y,z) = Cloren(— )%sin%(ﬁ\g cosk{%,y exp( — B2), (7b)
Eé?'ﬂgk‘%(x.y,Z)=A$'n‘°“°ﬁmnk(y°%qnsmmw +V2V)smk<°’ Wy exp—jB2), (70
ESTeR(x,y,2)=Clsho(—j) — sm% X+ o smkg,or)myexq—jﬁz). (7d)

According to the characteristics of intrinsic guided wave modes that generate the corresponding transverse forces on the
traveling electron, the-dipole modes are a linear superposition of L(%b?ﬁ) and Lségﬁ)e;‘), and they-dipole modes of

LSMERY,, and LSM3isr, wherek andn are positive integers. The longitudinal electric field of the synchronetigole

[ B=2xflc, which |mpI|esk(°)— —j(2km/w)] andy-dipole modegk{®= —j((2k—1)m/w)] can be expressed as
( gﬁfr?,g 2knK (2k)n ”
; jctopen (2K)7 | sin x cosk{”y exp(—jBanz), X dipole,
! (2k)n w

E(Zdip0|e)(X,y,Z) — (8)

AGKnBi2k- 1)Ky (2k—1)n (2k—1)7r
(shoy (2k—1)mr cosTxsink§°)yexq—jﬁ(2k,1)nz), y dipole.
k.n (— J)C(2k1)nT

For a traveling wave structure, one can obtain the normalplicity, we drop the subscript notation &f, andy, for now
ized characteristic quantiti/Q for each mode by comput- and use the notatiofE,| as the amplitude of the axial elec-
ing the stored energy per unit length and accelerating elec- trical field to stand foESP°'(x,y,z) in Eq. (8).

trical field E, and using the definitiof6,7] The stored energy in the structure with lengtlis deter-
mined by
Rxo,yo |Ez|x0 Yo
= Tk 9 1 ) )
Q i @ i U:IJ J' J' (eE“+ uH)dv. (10
\%

whereR/Q is evaluated at location of, andy,. For sim-
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Without loss of generality, we can express the stored enwe derived before. The wake field amplitude excited by a

ergy U for thei! mode as point charged particle traveling & andy, can be obtained
through([6]
U:|Ez|ch f f Yqdv, (11) _(2k)m ©
g |E,| 21)n SIN W Xo cosky Yo
whereC is a dimension- and mode-related constant. When q(2k)n Ryo o )
the Eq.(11) is substituted into Eq(9), the electric field am- =2Ki 0= 0 , X dipole
(2k)n

plitude will cancel out:

(2k—=1)m .
Rl _ ! _ (12) |Ez|(2k—1)nCOSTX05|nk§/O)y0
Qi wa f f pqdv R
qwi2k—1)n | Xo0Yo .
v i =2k,(2k_1)n = 5 0 .,y dipole,
(2k=1)n

This shows thaR/Q is only a function of the geometric (133
parameters of the structure and the particular mode, and can . )
be calculated directly through the complete electromagnetivherek; =1/4wi(Ry , /Q); is a normalized loss factor for
(EM) field component expressions and dispersion relations™ mode, and Eq(8) can be simplified to

2K) 7
w

- ( . .
|E4| (26n SIN x cosk{”y exp(—j Baknz), X dipole

E. =
2 % k-7 o _ _
|E| (2k—1)n Cos———X sinky”y exp(—jB2k-1)n2), Yy dipole.

(13b

As in all the wakefield calculations, once the longitudinal wakefiglds obtained, transverse forces can be directly calculated
from E, by using the original8] or extended Panofsky-Wenzel theorgdi for Cartesian coordinate systems:

—5 —€V.E;. (14
Thus,
2K) 2k) 2k)
|EZ|(2k)nexp(—jB(2k)nz)(&X(W) cos(w) xcosk(y(’)y—&yk(yo)sin( ) xsink§,°)y>, x dipole
IF
—L_e _ _ (k=7 (k=L o (k=17 ©
9z k| 1E2l (2k—1)n €XP( = B2k—1)n2)| — dix W sin x sinky”y + ayky cosTxcosky yl,

y dipole.
(15

By simple integrating both sides of E(L5) and keeping the real part, we have

SinIB(Zk)n N (2k)77 (Zk)ﬂ- (0) N (0)] (Zk)ﬂ- . (0) .
B (a W cos x coshky ™|y + ay|ky”[sin W xsinhky”ly |, x dipole

sin _ 2k—=1)m 2k—1)m 2k—=1)m
B Dn( ; L = ) sin( - ) xsinHk(y°)|y+&y|k(y°)|cos%xcosﬂk(yo)|y),

| Ez|(2k)n

F.=e>

k,n |Ez|(2k—1)n

B2k—1)n

y dipole.
(16)

From Eq.(16), the dipole mode transverse forces will vanish when the width of the rectangular waveguide approaches infinity
(under the synchronous conditi&ff’= — jk{®)= — jma/w), in agreement with the results of RE2]. In order to quantify our
analysis, we show a numerical example for the structure discussed iflRRedn X-bandH-plane dielectric partially loaded
rectangular waveguide structure with dimensionsef3ab=>5, w=23 mm, and relative permittivity 10.
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FIG. 2. Dispersion characteristics wfdipole mode(a), andy-dipole mode(b) for the X-band waveguide described in the text.

The transcendental equatigh) is a complex function of8,,, andf, which gives the field components and dispersion
relations of all the eigenmodes for a dielectric-loaded rectangular waveguide. For the inhomogeneous guide considered here,
the dispersion relation must be solved at each frequency. Figure 2 shows the dispersion curves for several modes in this
structure. The corresponding synchronous accelerating parameter for each mode is given by the intersection points between the
dispersion curve of each mode and the light speed line.

Due to the finite length of wakefield structure, one has to include the group velocity [@fethen, the wakefiel&, from
Eq. (13b) would be

2K)

W

E =
’ % k-7 o
|Ezl (2k-1)n COSTXSInky y| 1—

Vd2in
€=V 21n

( z . .
|E_| (2100 SIN xcoskg,o)y(l— E)exq—J,B(Zk)nz), x dipole

(17
V(2k-1)n E)exp(—jﬂ(zk—lmz), y dipole,
C—Vgk-1n L

whereL is length of the structure that is normalized ® bm in ourcomputationV, is group velocity, ana is speed of light.
As well, transverse wakefields expression from Bd) is modified to be

( sinB Vg z 27 (2K (2k) 7
(2k)n - (2k)n < N - (0) +a (0)| . (0)
|E,| 200m Boon (1 c—Von L)( W ¢cos x coshky ™|y + ay|ky”|sin W xsiniky"ly |,
x dipole
Fo=eX { SinBak—1)n Vok-1n  2z\[ . k=17  (2k=1)m
k,n |Ez|(2k—1)n 1- - Sin
Bzk-1)n C—VQok-1n L w w

(2k—

o
x x sintk{” |y + ay|k{”'|cos X Cosﬂk§°)|y) , y dipole.

(18

TABLE |. Parameters ofx-dipole synchronous accelerating TABLE II. Parameters ofy-dipole synchronous accelerating
modes excited by a charge traveling at transverse offset distanaaodes excited by a charge traveling at transverse affse0 mm

Xo=1 mm andy,=0. andyy=1 mm.

Mode Freq.(GH2) B; (rad/m (R/Q); Vglc Mode Freq.(GHz2) B; (rad/m (R/Q); Vglc
LSMmgpen 11.95 250.413 313.224 0.121 LSMfl‘Ort 7.319 153.392 461.556 0.472
LSE" 14.77 309.617 268.956 0.235 LSEI" 15.44 323.512 227.808 0.162
LSMmgpen 14.43 302.405 99.143 0.109 LSMet 12.72 266.685 283.758 0.142
LSER®" 18.36 384.701 269.121 0.16 LS?;IO“ 17.33 363.274 472.109 0.148
Lsmghen 17.57 368.282 17.383 0.104  LSMe" 15.9 333.305 61.771 0.108
LSE®" 21.84 457.697 86.92 0.13 LSE@'IOrt 20.27 424,755 230.643 0.133
LSMBen 33.92 710.998 171.053 0.237  LSM3" 33.79 708.15 213.547 0.335
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FIG. 3. Calculated anslaAFiA® simulated transverse wake fields FIG. 4. Calculated anslaAFIA® simulated transverse wakefields
at xo=1mm andy,=0 in an X-Band structure =3, b=5, w at Xo=0 andyy,=1mm in anX-Band structure due t&-dipole
=23 mm, s, =10, ando,=2 mm, q=1 nc) due tax-dipole modes. modes.

In the numerical calculation, we assume a Gaussian lon- For the completeness, we have also calculated the corre-

gitudinal beam shapgvith rms bunch lengthr, and charge 'Sl'gglr]edlng results foy-dipole modes which are shown in
g). Table | shows the calculated results for leadindipole : . . . -

modes synchronous with an ultrarelativisti@= 27f/c) The _transverse wakefield obtained is shown in F|_g. 4. The
electron bunch bunch is located axo=0 andy,=1 mm. The 18y-dipole

In Fig. 3, the transverse wakefields obtained using Eqmodes are also used here. It also shows a good agreement

(18) are shown. For this example, & bunch with=2 mm Wltlhntrs]ﬁr'\rq/::rr@)\?vlemﬂlg\t/fnsr.esented a different approach to
and g=1 nC located ako=1 mm andy,=0 is traversing Y, P PP

along the axis at the speed of light in dielectric-loaded wave:[he analysis of dipole transverse wakefields in a dielectric-

guide. Although we only list first %-dipole modes, a total of loaded rectangular waveguide accelerating structure which
18 x-dipole modes are used for the wakefields calculationsg'.\t/)es. a cler:]ir unie;;tle:jndlng ct))f each mdwu?jual TOdeS con-
In order to confirm the analytical method developed here Etlrl ution. The wakefields can be constructed as linear super-
commercial EM simulation toohAFIA® is used for the same7 position of each LSE and LSM modes which is characterized

structure. SinceAFIA® gives total wakefields that include as the geometric quantifg/Q. This approach gives a com-

all the modes, such as monopole, dipole, and other highe lete descnpuon of the wakefields in the pamally dlelectrlc_

order modes, one must deduce the dipole wakefields fromoaded waveguide structures. The analytical results are in
) o excellent agreement with the numerical simulations using

the wakefield results at both the beam positior, ( MAFIA®

=1mm, yo=0) and the center xo=0mm, y,=0). A '

very good agreement is found and illustrated in Fig. 3. The This work was supported by Department of Energy, High

small shape and amplitude deviations could be due to higheEnergy Physics Division, under the Contract No. W-31-109-

order quadrapole modégrot investigated in this paper ENG-38.
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